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Abstract. DNA is a biological macromolecule present in all known liv-
ing organisms, the basic unit is the nucleotide, or "base". The sequence
of the human genome is essentially known since 2003, however there are
still today many unknowns about the structure of our DNA.
In this internship we are interested in detecting the chemical modifica-
tions of one of the four bases of DNA, cytosine, with a third-generation
sequencer. The MinION is a device for nanopore sequencing whose out-
put is a time series corresponding to a current measurement. Basecalling
for this device is the process of translating this measurement into a DNA
sequence.
The objective of this internship is first to set up a pipeline for quick and
simple analysis of DNA sequenced with the MinION. Subsequently, we
propose a method for direct discrimination of non modified and modified
cytosines as a fifth base during basecalling. The signal to analyse is a time
series, comparable to data from an audio recording. In speech recognition
literature, there are powerful models on this kind of data. The chosen and
implemented model is a deep learning model, specifically a CNN-RNN-
CTC. A convolutional neural network followed by a bidirectional LSTM
recurrent neural network is used to perform a connectionist temporal
classification. Such a network can be trained to properly label a DNA
sequence based on a time series. Results show that our model is able to
learn to correctly align and return a sequence from the sequencing of a
synthetic DNA strand of a few hundred bases.
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1 Introduction

1.1 DNA methylation

DNA methylation is a type of chemical modification of DNA, it is a process in
which a methyl group is added on the fifth carbon of a cytosine, thus converting
it into 5-methylcytosine (5mC) (Fig.1).
There are many other possible modifications of DNA [33], we are particularly
interested in 5mC and 5hmC (5-hydroxymethylcytosine) in humans.

In humans, DNA methylation usually occurs on cytosines that precede guanine
(this is called a CpG site). Between 60 and 90% of the CpG sites are methylated
in mammals [21]. Some regions of the DNA have a high concentration of CpG
sites, they are called CpG islands and are usually unmethylated. These are most
often located in the promoter sequences. A promoter is a region of the DNA
located upstream of the start site of the transcription of a gene [10] [30].

When a CpG island present in the promoter is methylated, this is associated
with downstream gene inhibition (Fig.2).

Methylation is one of the phenomena determining the identity of cells, so that
cells having the same basic DNA sequence are differentiated into specialized
types (an example with the differentiation of blood cells in figure 3).

Abnormal methylation is associated with deregulated cellular processes that
can lead to cancer [17] [18].

The functions of methylation are still poorly understood. New methods allow
us to study the entire genome and paint a clearer picture of the methylome. It
seems that the relationship between DNA methylation and gene transcription is
more dynamic and nuanced than expected [23].

5-hydroxymethylcytosine (5hmC) is another chemical modification of cytosine,
a methyl group on a cytosine (5mC) can be oxidized to 5hmC. 5hmC has been
recently described as the "6th base" of DNA, early research indicates that its
functional role is distinct from 5mC with a determining role in the differentiation
of progenitor cells [11].

1.2 Immune system plasticity

Our immune system is a complex biological system characterized by its flexibil-
ity. Cancer cells can be detected and destroyed or left to divide and proliferate.
This immune response is coordinated by different cell types, among which are
the T cells that are known to play a key role. The balance between T cell sub-
types (eg Th0, Tregs, Th17) influences the final result of the response [3] [36].
These T cell subtypes are not fixed, their cell type is known to be "plastic" [38],
and their change in proportions is in some cases associated with cancer.
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Fig. 1: Methylation process (schema from Mikhail Dozmorov)

Fig. 2: Methylation in the promoter is associated with inactivation of the gene
(schema from Mikhail Dozmorov)

This internship is part of the AEROBICS project (Analysis and Epigenetic
Recognition Of dysBalanced Immune Cell plaSticity), which aims to study and
measure this imbalance of immune cells as a cancer marker by identifying the
methylation modifications. This project is itself part of the larger PLASCAN
project (Preventing Tumor Plasticity and Adaptability: Towards the New Gen-
eration of Personalized Medicine), a multidisciplinary research project for un-
derstanding and modeling cancer.

1.3 DNA sequencing by nanopores

To better understand these mechanisms, we seek to study DNA and its modifi-
cations using a third generation sequencer, MinION, developed and distributed
by Oxford Nanopore Technologies since 2014 [22].
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Fig. 3: Simplified model of hematopoiesis. A multipotent hematopoietic stem cell
differentiates into a lymphoid or myeloid progenitor. The differentiation of the
lymphoid progenitor results in different types of lymphocytes. The differentia-
tion of the myeloid progenitor provides, after several stages, erythrocytes, other
leucocytes (granulocytes, monocytes and macrophages) and platelets. (from the
original by A. Rad)

Oxford Nanopore Technologies (ONT) is a UK-based company that develops
nanopore sequencing products (including the portable DNA sequencer MinION).

The basic concept of nanopore sequencing is as follows:
Pass a strand of DNA through a nanoscale pore of a membrane from head to toe
and apply a potential difference across the membrane. The nucleotides present
in the pore will affect its electrical resistance so that current measurements over
time can indicate the base sequence of the DNA passing through the pore [24]
[5]. This electrical current signal ("squiggle" due to its appearance when plotted)
corresponds to the raw data collected by an ONT sequencer (Fig. 4).

1.4 The basecalling

Basecalling, for ONT devices, is the process of translating this raw signal into
a DNA sequence. This process is not a trivial task because the electrical sig-
nals come from single molecules and the rate at which the DNA strand passes
through the pore is non-uniform, which produces noisy data [29]. In addition,
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Fig. 4: The squiggle is the trace of the signal measured by the MinION. For the
illustration, a sequence after basecalling was added above, for a visualization of
a real signal see figure 11

the electrical resistance of a pore is determined by the bases present in several
nucleotides which are in the narrowest point of the pore (about five nucleotides
for the pores R9.4), which gives a large number of possible states (or k-mers):
45 = 1024 for a standard four-base model.
When modified bases are present, e.g. 5-methylcytosine, the number of possible
states can still increase:
55 = 3125.
Due to the non-uniformity of the transition rate of the DNA through the nanopore,
it is also difficult to detect a transition between two identical k-mers [29]. This
makes the basecalling of ONT devices a difficult machine learning problem and
a determining factor for the quality and operability of ONT sequencing.

During this internship we have two objectives:

1. Set up a pipeline to quickly and easily analyze the DNA sequenced with the
MinION (Fig. 6).

2. Develop a deep learning model to perform basecalling by directly differenti-
ating unmodified and modified cytosines. This model can be specially trained
for human DNA with the consideration of methylated cytosines.

2 The analysis pipeline

In order to efficiently analyze the data provided by the MinION (Fig. 6) we are
developing a pipeline with different existing tools.

In the remainder of this document we will talk about a "standard DNA", it
is a set of three samples of short synthetic DNA (900 bases) provided by Zymo
Research ( https://www.zymoresearch.com/products/5-methylcytosine-
5-hydroxymethylcytosine-dna-standard-set ) for which we know perfectly the
sequence. We sequenced these samples with the MinION in order to have control
data for all the experiments.

https://www.zymoresearch.com/products/5-methylcytosine-5-hydroxymethylcytosine-dna-standard-set
https://www.zymoresearch.com/products/5-methylcytosine-5-hydroxymethylcytosine-dna-standard-set
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These three samples have exactly the same base sequence but the cytosines
have been modified differently:

– The first sample contains only cytosines without modification.
– The second sample contains only 5-methylcytosines.
– The third sample contains 100% 5-hydroxymethylcytosines.

2.1 Pipeline Description

The final pipeline that has been developed is shown in figure 7.

– The basecaller performs the basecalling (cf 1.4), the result of this first part
of analysis is a set of files in the format fastQ [8], these files contain, for
each strand of DNA that went into a nanopore, its sequence accompanied
by quality scores phred [13] [12].

– Before sequencing, each DNA sample is "barcoded", an artificial barcode [25]
is attached to each strand of DNA. Thus one can sequence several samples
at the same time. Once the sequence is identified after the basecalling, we
can separate the different samples with the demultiplexer. This step allows
us to separate fastQ files in different folders, each corresponding to a specific
barcode.

– Then it is necessary to align the sequences with a reference file, for the stan-
dard DNA the sequence is provided by Zymo Research, for the human one,
we use hg38. This alignment phase gives us Sequence Alignment Map (SAM)
files that contain the previously obtained sequences with their position in the
genome.

– Finally, we can identify the frequency of methylation of regions of the genome
using Nanopolish [32].

2.2 The choice of basecaller

There are several tools capable of performing basecalling:

– Albacore ( available on community.nanoporetech.com ), the former base-
caller developed by ONT, now replaced by Guppy

– BasecRAWller [34],
– Chiron [35], a basecaller based on deep learning similar to the model we later

implement, a CNN-RNN-CTC.
– DeepNano [4]
– Flappie ( https://github.com/nanoporetech/flappie ) from ONT, an

experimental basecaller who uses a CTC, it replaced Scrappie.
– Guppy ( available on community.nanoporetech.com ), ONT’s current Gated

Recurrent Unit network based basecaller.

community.nanoporetech.com
https://github.com/nanoporetech/flappie
community.nanoporetech.com
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– Nanocall [9]
– Scrappie ( https://github.com/nanoporetech/scrappie ) of ONT, for-

merly an experimental basecaller, now replaced by Flappie

Their performances have been compared in the literature [37] [29]. These
results show empirically that the new neural network based basecallers outper-
form the old HMM (Hidden Markov Models) models. Thus Oxford Nanopore
Technologies quickly integrate in their basecaller the most effective models and
the most suitable to suit the evolution of nanopores version of MinION.

Their basecaller, Guppy, which uses a recurring GRU network, was therefore
our choice for our pipeline.

Guppy is provided with several parts, Guppy_Basecaller, Guppy_Barcoder
and Guppy_Aligner.

For the detection of methylation we had the choice between SignalAlign [28]
and Nanopolish [32]. The 2 programs are HMM, however, SignalAlign runs under
Python 2 and has not been updated for 3 years, so we preferred Nanopolish.

2.3 Pipeline Result

The use of our pipeline on standard DNA samples shows that it is possible
for us to differentiate globally methylated sequences from unmodified sequences
(Tab. 1, Fig. 5).

Moreover, the analysis of the 5-hydroxymethylated sample (5hmC) allows us
to verify that this modification is not detected as a false positive for 5mC (Tab.
1, Fig. 5) . Nanopolish [32] is not trained for 5hmC, it is normal that it does not
detect the chemical modification on this sample.

Sample Unmodified 5-methylated 5-hydroxymethylated
Number of CpG sites 2391329 10521 3485
Number of CpG sites 5-methylated 33348 6939 64
P-value < .000001 < .000001 < .000001
Average methylation .014 .660 .019

Table 1: Average methylation levels of the CpG sites of the different standard
DNA samples obtained with our pipeline.

Despite the positive results of the execution of our pipeline, two points can be
immediately raised by seeing these results:

1. For the average methylation, we expect 0, 1 and 0 but we get 0.014, 0.660
and 0.019, up to 34% error in the detection of actually methylated Cytosines.

https://github.com/nanoporetech/scrappie
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Fig. 5: Frequencies of 5-methylated cytosines detected by Nanopolish at the
end of the pipeline on standard DNA samples. The first and third diagrams
correspond respectively to the completely unmodified DNA sample and the 5-
hydroxymethylated DNA sample, they are correctly detected as very little 5-
methylated. The second sample corresponds to the standard DNA containing
5-methylated cytosines, Nanopolish detects it as much more strongly methy-
lated than the others.

2. On the number of CpG sites, between the three synthetic DNA samples, the
sequences are exactly the same, so we would expect about 1/3 of CpG sites
in each sample, however we get a distribution of the number of sites between
samples C, 5mC and 5hmC of 99%, 0.4% and 0.1%.

In our pipeline, the sources of errors during the analysis are numerous and
cumulative. During basecalling, sequence prediction errors may occur, such an
error may be reflected in the demultiplexing phase if the barcode has been labeled
incorrectly. Finally Nanopolish can also make mistakes by classifying a CpG site
as methylated or not.

In addition, the model used by Guppy is set and trained for the genera-
tion of sequences with 4 labels (A, C, G and T), it is not trained to recog-
nize 5mC or 5hmC. It has been demonstrated that it is possible to detect
5-hydroxymethylcytosine distinctly from 5-methylcytosine [26], the measured
electric current is different when the cytosines are unmodified, 5-methylated or
5-hydroxymethylated. This explains the difference in the number of sites be-
tween the different samples, the sequences of the modified samples are most
likely misclassified and considered as poor quality at the basecalling stage.

In order to study methylation and hydroxymethylation, we propose to develop
our own model in order to train it for our basecalling needs. By having the
control of the model we will be able to parameterize it and train it to label the
methylated and hydroxymethylated sites.
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Fig. 6: DNA sequencing with MinION, DNA samples to analyses are prepared, a
barcode is added to each (multiplexing). Once the preparation is done, samples
are inserted into the sequencer. Reads are analysed with our pipeline (Fig. 7).
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Fig. 7: The MinION data analysis pipeline (cf Fig. 6).
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3 The implementation of a custom basecaller,
CNN-RNN-CTC model

In addition to the problems previously seen with MinION signal basecalling
(1.4), we have the following knowledge of the electrical signal sampling:

– The sampling frequency is 4 kHz.
– A strand of DNA passes through a nanopore on average at 450 bases / s,

this rate varies according to the nucleotide composition, the motor protein
can also stop working if it has no more energy (ATP).

So we have on average 9 current measurements per k-mer.
This sampling is similar in shape to that found in automatic speech recogni-

tion [16].

3.1 Sequence prediction with the CTC model

The CTC (Connectionist Temporal Classification) model is a modification made
to a recurrent neural network during training to allow it to learn how to classify
a sequence from a series of time data [15] without a prior segmentation step.

The basic idea of the CTC is as follows: to be able to predict a sequence z
with the finite alphabet L from a series of data x with |z| ≤ |x|, we add to L a
label blank, L′ = L ∪ blank.

1. For each Xt entry, the recurrent neural network gives a prediction.
2. Each prediction is transformed into a probability vector of size |L′|.
3. The resulting matrix is then decoded to obtain a sequence of labels of L′.
4. Consecutive label repetitions are replaced by this label only once, in our

case this corresponds to multiple measurements of the same k-mer while the
DNA strand has not moved.

5. The blanks are deleted, they indicate the changes of k-mer, this step com-
bined with the previous one allows to differentiate the identical consecutive
nucleotides.

Example :
(a) For a 20 measurements input,

the decoded sequence is _AAGG_CC_GGTTTGG__GG
(b) Consecutive repetitions deleted: _AG_C_GTG_G
(c) Blanks deleted : AGCGTGG

6. Compare the sequence obtained with the one expected.

3.2 Matrix decoding, the Beam search algorithm

The step 3 in the prediction with the CTC model, decoding, can be done in two
ways. The first method, the simplest and fastest, is greedy, it simply consists in
selecting the most probable labels at each time step (Fig. 8).
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Algorithm 1 CTC Beam Search
Require: Probabilities matrix mat, beamWidth
1: beams← {∅}
2: scores(∅, 0)← 1
3: for t = 1...T do
4: bestBeams← bestBeams(beams, beamWidth)
5: beams← {}
6: for b ∈ bestBeams do
7: beams← beams ∪ b
8: scores(b, t)← computeScore(mat, b, t)
9: for c ∈ alphabet do
10: b′ ← b+ c
11: scores(b′, t)← computeScore(mat, b′, t)
12: beams← beams ∪ b′

13: end for
14: end for
15: end for
16: return bestBeams(beams, 1)

However, this method has a disadvantage, since it does not take into account
all the possible paths in the matrix, it is possible to obtain a sequence with a
suboptimal probability, which is why it may be useful to visit different paths
(Fig. 9). However, it is impossible to visit exhaustively all paths, the complexity
is too important, an algorithm has been proposed, the Beam Search [16] with
wich it is possible de decode the matrix by iterating on the time steps while
keeping a memory of configurable size on the best paths visited (Alg. 1).

3.3 Training the model

The training of a CTC aims to maximize the logarithm of the probabilities of
correct classifications on the training data set, formally defined as follows:

With S the set of training data, (x, z) ∈ S,
x the input data, z the expected sequences, the objective function to minimize
is:

−
∑

(x,z)∈S

ln(p(z|x)) (1)

We implemented the model with the Keras API [7] and the TensorFlow backend
[1]. The model, represented in Figure 10, is composed of a first convolutional
network layer (CNN), followed by a recurrent neural network (RNN).

This CNN-RNN architecture is classic in the field of automatic speech recog-
nition [2] when predicting end-to-end sequences without segmentation. In ad-
dition, it has been demonstrated on MinION data that this architecture gives
better predictions than a CNN or RNN network alone [35].

The RNN is a bidirectional network [31] with LSTM cells [19] [14].
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Fig. 8: Decoding the probability matrix with the greedy method, at each time
step the label of highest probability is chosen. The sequence is "", the probability
of the path is 0.8∗0.6 = 0.48. ( Illustration from https://towardsdatascience.
com/ )

The RNN provides a prediction at each time step, the resulting prediction
sequence is passed to a perceptron whose activation function is a softmax [6].

The result of this softmax is a prediction matrix whose decoding is described
in 3.2.

Preparation of training data Training basecalling models presents a major
challenge, it is impossible to provide the model with a training data set S for
which we are fully aware of the correspondence between x and z. Indeed, even
knowing the sequence of standard DNA samples does not guarantee that a read-
ing obtained by the MinION is not a partial reading, which can happen if the
DNA strand breaks.

The method for creating our dataset is therefore somewhat circular, it con-
sists in sequencing DNA samples with a basecaller that we consider reliable, and
then using this data as a learning base.

Oxford Nanopore Technologies provides a tool that allows us to process
sequencing data, both raw (fastA) and basecalled (fastQ). Taiyaki ( https:
//github.com/nanoporetech/taiyaki ) allows us to match a measured cur-
rent signal to the sequence we obtain with our pipeline. This allows us to obtain
a file in which a data set x is "mapped" to the corresponding z sequences. A vi-
sualization of parts of two sequences aligned in this way on their signal is visible
in figure 11.

https://towardsdatascience.com/
https://towardsdatascience.com/
https://github.com/nanoporetech/taiyaki
https://github.com/nanoporetech/taiyaki
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Fig. 9: Decoding by testing all paths, the probabilities of paths that give the
same sequence are added together. The sequence with the highest probability
is selected. The 3 paths that give "a" have probabilities: 0.2 ∗ 0.4 = 0.08, 0.2 ∗
0.6 = 0.12, 0.8 ∗ 0.4 = 0.32, their sum is equal to 0.52, 0.52 > 0.48 so the
sequence "a" is more likely than the sequence"". ( Illustration from https:
//towardsdatascience.com/)

3.4 Results

We conducted a series of training sessions to assess the learning capabilities of
the model and test different hypotheses.

For our first training we use 50 sequences which will be divided into 40 / 10 for
the training / validation (Fig. 12). We observe that the training converges very
quickly. The error does not go below 800 which is a very high value.

– Hypothesis: The number of sequences has no influence on the value of the
error.

– Experiment: Train the model with a very small number of sequences to
highlight a difference in the value of the error (Fig. 13).

– Result: With only 4 sequences we already get an error close to 800, so no
change from the data set with 40 sequences.

– Hypothesis: The error is not due to a bias in the data set.
– Experiment: Repeat the training with disjointed sets of sequences (Fig. 14).
– Result: We systematically obtain similar errors, which would suggest that

the problem does not come from the data itself.

– Hypothesis: The length of the sequences has no influence on the value of the
error.

https://towardsdatascience.com/
https://towardsdatascience.com/
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– Experience: We successively train the model with 3 sets of 4 sequences whose
length is constrained (Fig. 15).

– Result: There is a strong difference in the error, correlated to the average
length of the sequences. The hypothesis can be rejected, the calculation of
the error is biased by the length of the sequence.

We finally trained our model on a training data set containing only one sequence
for more than 8 hours, i.e. 6600 iterations. As we expected, the error on the
training sequence decreases but having only one example to learn from, the model
overfits and the error on validation only increases (Fig. 16). The final value of
the error is 0.2748, a Levenshtein distance between the predicted sequence and
the expected sequence gives us 973, but if we remove the last 973 labels from
our prediction, then we have a distance of 0. The predicted sequence is exactly
the one expected, the model has learned well by heart, however additional labels
are added at the end and distort the prediction.
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Fig. 10: The implemented model. A time series is given as an input, the first
layer, a convolutional network, extracts local patterns. The recurring network
makes a prediction for each time step. The next layer is a perceptron whose
activation function is a softmax [6], the output is then a matrix of dimensions (
n, |L′|) containing for each time step the predicted probability of each L′ label.
Finally, the last layer receives the expected sequence, the probability matrix, the
number of data ( n ), the size of the expected sequence, and calculates the CTC
error.
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Fig. 11: Labelled non-methylated Standard DNA sequences, aligned with their
squiggle, results obtained with Taiyaki after using Guppy for basecalling.
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Fig. 12: Error evolution with 40 training sequences and 10 validation sequences.

Fig. 13: Error evolution with different number of sequences in the training data
sets.
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Fig. 14: Evolution of the error with disjointed training sets.

Fig. 15: Error evolution with sequences of different lengths.
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Fig. 16: Evolution of the error during training on a single sequence, validation is
performed on a different sequence. There is an expected overfitting.
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4 Discussion

Our model is able to learn a sequence by heart, however we have seen that
when predicting it adds labels after the sequence, which distorts the result, the
learning is also extremely long, 6600 iterations and 8 hours to learn a sequence
by heart.

These problems are probably related to bugs in the implementation and
possibly biases in learning. The implementation was done at a high level in order
to make a protoype in a short time using the optimization function present in
TensorFlow [1]. We recommend modifying the training loop to have absolute
control, especially over the optimization function.

To accelerate learning, it will be necessary to implement batch normalization
[20], in a deep learning network a normalization between each layer allows to
considerably accelerate the convergence of learning.

In the context of research to understand the mechanisms of cancer in hu-
mans, we are particularly interested in the study of human DNA. Control over
the model will allow us to train it on sequences of the human genome, which
will make it a specialized and non generalist basecaller like existing basecallers.
Indeed, the genomic context is completely different between all living species,
bacteria, for example, have very different chemical modifications from what is
found in humans.

For the detection of 5hmC, it is documented that brain tissues are rich in
hydroxymethylated regions [27]. To generate a learning database to train the
model to recognize this modification, it will be necessary to use techniques such
as cas9-targeting, which makes it possible to target known regions of DNA for
nanopore sequencing.
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Appendices

.1 Deregulated cellular processes

Fig. 17: Exposure to external sources and internal processes can induce stable
and potentially reversible changes in the epigenome. The "signatures" and per-
sistence of these alterations depend on multiple factors such as the duration
of exposure, the type of tissue and the stage of development (The periods of
puberty or intrauterine life can be particularly sensitive). ( from [17])
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.2 Length distribution of standard DNA sequences completely
unmethylated

Fig. 18: The sequences with barcode 3 are part of the non-methylated sample. We
know that the sequences make 900 bases, however after basecalling we observe
a distribution of length mainly between 350 and 900, with two modes at 500
and 900. During DNA preparation, manipulations can damage it, sometimes
breaking the strand, this explains the presence of a mode between 450 and 500,
the DNA strands can be cut in half which gives a large number of sequences of
450 length. Longer sequences can be contamination, the DNA of a bacterium
that has slipped into the sample, for example, or basecaller prediction errors.
The large variation in sequence sizes can also be attributed to prediction errors.
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